Autumn	Spring	Summer
I can identify and represent numbers using objects and pictures, including the number line, and use the language of: equal to, more than, less than (fewer), most, least. I can find one more and one less than a given number. I know the addition and subtraction facts for all numbers to at least 5. I know all the pairs of numbers which add up to 10 . I can use the number facts \| already know (like number bonds of 5 and 10) and place value to add or subtract pairs of single digit numbers. I can count through ten when adding a single digit to another number.	I can remember number bonds to 10 and 20 and use this knowledge to solve subtraction problems. (for example, $9+7=16 ; 16-7$ $\text { = 9; } 7 \text { = } 16 \text { - } 9) .$ I know the effect of adding or subtracting zero to another number. I can skip count in 2 s . I recognise odds and evens numbers. I know the addition doubles of all numbers to at least 5 . I can identify near doubles using doubles already known. (for example $2+3=5$ because $2+2$ $=4+1$ more).	I can represent and use number bonds and related subtraction facts within 20. I can use patterns of similar calculations. I can add 9 to a single digit number by adding 10 and subtracting 1. I can reorder numbers when doing addition, starting with the biggest number. I can identify half of numbers to 10.

Non negotiables Year 3 Mental maths

Autumn	Spring	Summer $=0$
I can compare and order numbers from 0 up to 100; using <, > and = signs. I can partition numbers in different ways (for example, $23=20+3$ and $23=10+13$) to support subtraction. I can add and subtract to 20 to become increasingly fluent in finding facts such as using $3+7=$ 10; $10-7=3$ and $7=10-3$ to calculate $30+70=100 ; 100-70=$ 30 and $70=100-30$. I check my calculations, including by adding to check subtraction and adding numbers in a different order to check addition (for example, $5+$ $2+1=1+5+2=1+2+5)$. This establishes commutativity and associativity of addition. I can add and subtract numbers mentally, including: - a two-digit number and ones - a two-digit number and tens - two two-digit numbers - adding three one-digit numbers - show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot. I can partition additions into tens and ones and then recombine. (For example $43+25=40+20=60,5+$ $3=8.60+8=68)$. I can recognise and use the inverse relationship between addition and subtraction to solve missing number problems.	I can use place value and number facts to solve problems. I can recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to $100(30+70)$ I can find a small difference by counting up from the smaller to the larger number. I can add or subtract 9, 1911 or 21 by rounding and compensating. (For example $+19=+20-1$) I can add three small numbers by putting the largest number first and or find a pair totalling 10. I can recall and use multiplication and division facts for the 2,5 and 10 multiplication tables. I can recognise odd and even numbers.	I can calculate mathem: statements for multiplic division within the multateaming communty tables and write them using the multiplication (\times), division (\div) and equals (=) signs. I can show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot. I am beginning to use other multiplication tables (like the $3 X$ and $4 X$ tables) and recall multiplication facts, including using related division facts to perform mental calculations. I know the doubles of all numbers to 10 and corresponding halves. I can identify near doubles. (For example $8+9=17$ because $8+8=$ $16+1)$. I can relate halving to fractions and measures (for example, $40 \div 2=20$, 20 is a half of 40). I use commutativity and inverse relations to develop multiplicative reasoning (for example, $4 \times 5=20$ and $20 \div 5$ = 4). I can partition into five and a bit when adding 678 or 9 then recombine.

Autumn	Spring	Summer
I can partition additions into tens and ones and then recombine. (For example $43+$ $25=40+20=60,5+3=8.60+$ $8=68$). I know the addition and subtraction facts for all numbers to 20. I can find a small difference by counting up from the smaller to the larger number. I can reorder numbers in a calculation. (For example starting with the largest number when adding). I can add and subtract numbers mentally, including: - a three-digit number and ones - a three-digit number and tens - a three-digit number and hundreds. I can use my knowledge of number facts and place value to add or subtract pairs of numbers. I can say or write a subtraction statement corresponding to a given addition statement. (For example if I'm given $24+35=59$ then $59-35=24$, or $59-24=$ 35).	I can add 3 or 4 small numbers by putting the largest number first and / or by finding pairs totalling 9, 10 or 11. I can add or subtract mentally a near multiple of 10 to or from a 2 digit number. I can bridge through a multiple of 10 and then readjust. I can use my knowledge of number facts and place value to multiply or divide by $2,5,10$ or 100. I can recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. I know that to multiply a number by 10 /or 100 it shifts its digits 1 or 2 places to the left. I know all pairs of multiples of 5 with a total of 100 .	I know all pairs of multiples of 100 with a total of 1000 . I can say or write a division statement corresponding to a given multiplication statement. (For example $24 \div 6=4$ because $6 \times 4=24$). I can use patterns of similar calculations. (For example $2+8$ $=10,20+80=100,200+800=$ 1000). I can recognise, find and write fractions of a set of objects: unit fractions and non-unit fractions with small denominators. I am confident doubling or halving a given number. I can identify near doubles. (For example $18+19=37$ because $18+18=36+1$). I know what strategies I can use to mentally solve addition, subtraction, multiplication and division problems.

Autumn	Spring	Summer
I can find 1000 more or less than a given number. I can round any number to the nearest 10,100 or 1000. I can count backwards through zero to include negative numbers. I can reorder numbers in a calculation. (For example starting with the largest number when adding). I can add numbers by partitioning them into 10s and 1 s adding the 10 s first. I can add 3 two digit multiples of 10. I can add or subtract 9, 19 or 29, 11,21 or 31 by rounding and compensating. (For example 54 $+29=54+30-1$). I can add or subtract the nearest multiple of 10 then adjust. (For example 86-49=86-50+ 1).	I can bridge through 100 when adding. I can add 3 or 4 small numbers finding pairs totalling 10. I continue to use the relationship between addition and subtraction to work out inverse statements. (For example if $64+29=93$ then 93 $-29=64$ and $93-64=29$). I can use knowledge of number facts and place value to add or subtract any pair of 2 digit numbers. I can recall multiplication and division facts for multiplication tables up to 12×12. I can use place value, known and derived facts to multiply and divide mentally, including: - multiplying by 0 and 1 ; - dividing by 1 ; - multiplying together three numbers. I can multiply by 10 and then 100.	I can find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths I can partition to carry out multiplication. I can recognise and use factor pairs and commutativity in mental calculations. (For example $8 \times 7=56$ so $56 \div 8=$ 7). I can double any 2 digit number by doubling the 10 s first. I can identify near doubles. (For example $18+19=37$ because $18+18=36+1)$. I can round decimals with one decimal place to the nearest whole number. I know what strategies I can use to mentally solve addition, subtraction, multiplication and division problems.

Autumn	Spring	Summer
I can count up through the next multiple of 10,100 or 1000. I can round any number up to 1 000000 to the nearest 10, 100, 1000,10000 and 100000. I can interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero. I can partition into $100 \mathrm{~s}, 10$ s and ones adding the most significant first. I can use known number facts and place value to add or subtract pairs of 3 digit multiples, multiples of 10 and 2 digit numbers with one decimal place. I can reorder numbers in a calculation. (For example starting with the largest number when adding). I can add several numbers together.	I can add and subtract numbers mentally with increasingly large numbers. I practise mental calculations with increasingly large numbers to aid fluency. (For example, $12462-2300=$ 10 162). I can add or subtract the nearest multiple of 10 then adjust. (For example 586-249 = 586-200-50 + 1). I have a clear understanding of the relationship between addition and subtraction and am exploring and developing knowledge of inverses. I can recall multiplication and division facts for multiplication tables up to 12×12. I can multiply and divide numbers mentally drawing upon known facts. Use closely related facts to carry out multiplication and division. (For example $14 \times 2=28$ so 14 X $20=280$). I can multiply and divide whole numbers and those involving decimals by 10,100 and 1000 .	I can partition to carry out multiplication or division. I can use the relationship between multiplication and division. I know how to find all the factors of a given number. I can double any 2 digit number by doubling the 10 s first. I can identify near doubles. (For example $18+19=37$ because $18+18=36+1$). I can double and half decimals. I can round decimals with two decimal places to the nearest whole number and to one decimal place.

Autumn	Spring	Summer
I can identify the value of each digit in numbers given, to three decimal places. I can multiply and divide numbers by 10,100 and 1000 giving answers up to three decimal places. I can add or subtract the nearest multiple of 10,100 or 1000 and then adjust. (For example 4586-2998 = 4586-2000-1000 + 2). I can reorder numbers in a calculation. (For example knowing that addition and multiplication can be done in any order). I have a clear understanding of the relationship between addition and subtraction and am exploring and developing knowledge of inverses. I can use my knowledge of number facts and place value to add or subtract pairs of 3 digit multiples of 10 and 2 digit numbers with 1 decimal place. I can doubling and halve whole numbers.	I can double and halve decimals. I can use my knowledge of number facts and place value to multiply or divide. I can partition to carry out multiplication or division. I know how to find all the factors of a given number. I have a strong understanding of all strategies for all 4 operations.	I can find all square numbers to 100 . I can use my knowledge of number facts and place value to add and subtract mentally. I can use my knowledge of number facts and place value to add and subtract numbers with 1 and 2 decimal places. I know how to find all prime numbers to at least 20 (but within 100).

